Friction Problems – Solution Strategy

Ambar K. Mitra

This document contains screen-shots from the Statics-Power software. Visit www.actuspotentia.com for details.

General Principles (problems on a plane)

1. Draw free-body-diagrams for all bodies in the problem
2. Write equilibrium equations for bodies.
 a. 2 force balance equations for slip
 b. 2 force balance equations and 1 moment balance equation for bodies that can tip or roll.
3. Write additional equations connecting the forces that act on the bodies from rods, cables, etc. These equations arise from:
 a. Principle of constant tension along a continuous cable.
 b. Equilibrium of frictionless pulleys.
 c. Newton’s third law.
4. Count the number of unknowns (K) in the problem.
5. Count the number of equations available (N) from steps 2 and 3.
6. Determine the difference $M=K-N$. If M was negative, the modeling of the problem was incorrect. If M was positive, we are M equations short.
7. Write the friction force inequalities for all rough contacts. Say, there is J number of inequalities.
8. Change M number of inequalities into equalities.
9. Solve for the unknowns.
10. Check the validity of the remaining $J-M$ number of inequalities.
11. Accept solution if all the inequalities were satisfied in step-10. Else, discard the solution.
12. Go to step-8 and choose a different set of inequalities and change these into equalities.
Problem-1

A 50lb block of uniform density is on an incline. The coefficient of static friction between the block and incline is 0.3. Determine the maximum value of P for which the body remains in equilibrium. Is the impending motion by tipping or slipping up the incline?

Tipping:

- How many bodies? 1 (body A)
- How many rough surfaces? 1
 - Between A and floor, \(\mu \) known

Body A

- Weight of A: known
- How many unknown forces? 1
 - \(P(A1) = \text{force } P \)
- Motion: tip/roll (force and moment balance)
Additional equation for $P(A1)$: 0

Equilibrium equations for A: 3

\[
P(A1)\sin 60 + N(AFloor) - 50\cos 40 = 0 \\
P(A1)\cos 60 - F(AFloor) - 50\sin 40 = 0 \\
3 \times 50 \cos 40 + 2 \times 50 \sin 40 - 4 \times P(A1)\cos 60 - 6 \times P(A1)\sin 60 = 0
\]

Additional equations: 0
Friction inequalities changed to equalities: 0 out of 1

Find unknowns: $N(AFloor)$, $F(AFloor)$, $P(A1)$

(Three equations and three unknowns)

Check inequality:

\[F(AFloor) \leq 0.3N(AFloor)\]

Discard solution if inequality was violated.
Slipping:

- How many bodies? 1 (body A)
- How many rough surfaces? 1
 - Between A and floor, μ known

- Weight of A: known
- How many unknown forces? 1
 - $P(A1) = \text{force } P$
- Motion: slip (force balance)

- Additional equation for $P(A1)$: 0
Equilibrium equations for A: 2

\[P(A1) \sin 60 + N(AFloor) - 50 \cos 40 = 0 \]
\[P(A1) \cos 60 - F(AFloor) - 50 \sin 40 = 0 \]

Friction inequalities changed to equalities: 1 out of 1

\[F(AFloor) = 0.3N(AFloor) \]

Find unknowns: N(AFloor), F(AFloor), P(A1)
(Three equations and three unknowns)

Tip or Slip

Compare P(A1) values for tip and slip solutions; pick the smaller of the two solutions.
Problem-2

Blocks A and B weigh 20lb and 50lb, respectively. The blocks are connected by a continuous cable that passes over a frictionless pulley. The coefficient of static friction between the blocks is 0.2. The motion of the blocks is impending. What is the friction coefficient between block B and floor and what is the tension in the cable?

- How many bodies? 2 (bodies A and B)
- How many rough surfaces? 2
 - Between A and B, μ known
 - Between B and floor, μ unknown
- Figure-2b -

- **Body A**
 - Weight of A: known
 - How many unknown forces? 1
 - \(P(A1) = \text{force from cable} \)
 - Motion: slip (force balance)

- **Body B**
 - Weight of B: known
 - How many unknown forces? 1
 - \(P(B1) = \text{force from cable} \)
 - Motion: slip (force balance)

- **Figure-2c**

 - Additional equation connecting \(P(A1) \) and \(P(B1) \): 1
 - Continuous cable

\[P(A1) = P(B1) \]

- **Figure-2d**

Solution Strategy

Equilibrium Equations

<table>
<thead>
<tr>
<th>For body A</th>
<th>For body B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Unknown forces: \(N(AB) \) \(F(AB) \) \(N(BFloor) \) \(F(BFloor) \) \(\mu(BFloor) \) \(P(A1) \) \(P(B1) \)

Change 2 out of 2 INEQUALITIES into EQUALITIES

- \(F(AB) = \mu(AB) N(AB) \)
- \(F(BFloor) = \mu(BFloor) N(BFloor) \)

VERIFY REMAINING INEQUALITIES
- Equilibrium equations for A: 2

\[N(AB) - 20 \cos 25 = 0 \]
\[P(A1) + F(AB) - 20 \sin 25 = 0 \]

- Equilibrium equations for B: 2

\[N(BFloor) - N(AB) - 50 \cos 25 = 0 \]
\[P(B1) + F(BFloor) - F(AB) - 50 \sin 25 = 0 \]

- Friction inequalities changed to equalities: 2 out of 2

\[F(AB) = 0.2N(AB) \]
\[F(BFloor) = \mu(BFloor)N(BFloor) \]

Find unknowns: \(N(AB), F(AB), N(BFloor), F(BFloor), \mu(BFloor), P(A1), P(B1) \).

(Seven equations and seven unknowns)
Problem-3

Block A weighs 20lb and block B weighs 50lb. The coefficient of static friction at all surfaces is 0.3. Find the force Q and the tension in the rod when motion of block B is impending.

Figure-3a

- How many bodies? 2 (bodies A and B)
- How many rough surfaces? 2
 - Between A and B, μ known
 - Between B and floor, μ known

Figure-3b

© Actus Potentia, Inc. (www.actuspotentia.com)
- Body A
 - Weight of A: known
 - How many unknown forces? 1
 - $P(A1) =$ force from bar
 - Motion: slip (force balance)
- Body B
 - Weight of B: known
 - How many unknown forces? 1
 - $P(B1) =$ force Q
 - Motion: slip (force balance)

Additional equation connecting $P(A1)$ and $P(B1)$: 0

Equilibrium equations for A: 2

\[
N(AB) + P(A1) \sin 30 - 20 = 0 \\
F(AB) - P(A1) \cos 30 = 0
\]
- Equilibrium equations for B: 2

\[N(BFloor) - N(AB) - 50 = 0 \]
\[P(B1) - F(BFloor) - F(AB) = 0 \]

- Friction inequalities changed to equalities: 2 out of 2

\[F(AB) = 0.3N(AB) \]
\[F(BFloor) = 0.3N(BFloor) \]

Find unknowns: N(AB), F(AB), N(BFloor), F(BFloor), P(A1), P(B1).
(Six equations and six unknowns)
Problem-4

The coefficient of friction between the 50lb block A and the floor is 0.3. Find force Q for impending motion.

- How many bodies? 2
 - Block A
 - Pin f
- How many rough surfaces? 1
 - Between A and floor, μ known
- Figure-4b -

- **Body A**
 - Weight of A: **known**
 - How many unknown forces? **1**
 - \(P(A1) = \text{force from bar, } F(ef) \)
 - Motion: **slip** (force balance)

- **Body B**
 - Weight of B: **known** (weight of pin = 0)
 - How many unknown forces? **3**
 - \(P(B1) = \text{force from bar, } F(fe) \)
 - \(P(B2) = \text{force from bar, } F(fg) \)
 - \(P(B3) = \text{force } Q \)
 - Motion: **slip** (force balance)

- Figure-4c

- **Additional equation connecting** \(P(A1) \) **and** \(P(B1) **: 1**
 - Newton’s 3\(^{rd}\) Law

\[
P(A1) = P(B1)
\]
Equilibrium equations for A: 2

\[N(A_{Floor}) + P(A1) \sin 25 - 50 = 0 \]
\[F(A_{Floor}) - P(A1) \cos 25 = 0 \]

Equilibrium equations for B: 2

\[P(B1) \cos 25 - P(B2) \cos 80 + P(B3) \cos 40 = 0 \]
\[- P(B1) \sin 25 + P(B2) \sin 80 + P(B3) \sin 40 = 0 \]

Friction inequalities changed to equalities: 1 out of 1

\[F(A_{Floor}) = 0.3N(A_{Floor}) \]

Find unknowns: \(N(A_{Floor}), F(A_{Floor}), P(A1), P(B1), P(B2), P(B3) \).
(Six equations and six unknowns)
Problem-5

The cylinders A and B weigh 50lb and 80lb, respectively. The coefficient of friction at the contact between A and B is 0.4. The coefficient of friction is 0.2 at all other contacts. Determine the force P for impending motion.

- How many bodies? 2 (bodies A and B)
- How many rough surfaces? 3
 - Between A and B, μ known
 - Between A and floor, μ known
 - Between B and floor, μ known
Body A
- Weight of A: known
- How many unknown forces? 1
 - P(A1) = applied force P
- Motion: tip/roll (force and moment balance)

Body B
- Weight of B: known
- How many unknown forces? 0
- Motion: tip/roll (force and moment balance)

Additional equation for P(A1): 0
Solution Strategy

Equilibrium Equations:

For body A: 3

For body B: 3

OK

Unknown forces: \(N(AB) \), \(F(AB) \), \(N(AFloor) \), \(F(AFloor) \), \(N(BFloor) \), \(F(BFloor) \), \(P(A1) \)

Change 1 out of 3 INEQUALITIES into EQUALITIES

\[
F(AB) = \mu N(AB) \\
F(AFloor) = \mu N(AFloor) \\
F(BFloor) = \mu N(BFloor)
\]

VERIFY REMAINING INEQUALITIES

Figure-5d

- Equilibrium equations for A: 3

\[
N(AFloor) + P(A1) \sin 50 - F(AB) - 50 \cos 20 = 0 \\
P(A1) \cos 50 + F(AFloor) - N(AB) - 50 \sin 20 = 0 \\
F(AFloor) - F(AB) = 0
\]

- Equilibrium equations for B: 3

\[
N(BFloor) + F(AB) - 80 \cos 20 = 0 \\
N(AB) + F(BFloor) - 80 \sin 20 = 0 \\
F(AB) - F(BFloor) = 0
\]

- Friction inequalities changed to equalities: 1 out of 3

 o Assumption-1

\[
F(AB) = 0.4N(AB)
\]

Find unknowns: \(N(AB) \), \(F(AB) \), \(N(Floor) \), \(F(AFloor) \), \(N(BFloor) \), \(F(BFloor) \), \(P(A1) \).

(Seven equations and seven unknowns)

Verify inequalities

\[
F(AFloor) \leq 0.2N(AFloor) \\
F(BFloor) \leq 0.2N(BFloor)
\]

Discard solution if inequalities were violated.
o **Assumption-2**

\[F(AFloor) = 0.2N(AFloor) \]

Find unknowns: \(N(AB), F(AB), N(AFloor), F(AFloor), N(BFloor), F(BFloor), P(A1) \).

(Seven equations and seven unknowns)

Verify inequalities

\[F(AB) \leq 0.4N(AB) \]
\[F(BFloor) \leq 0.2N(BFloor) \]

Discard solution if inequalities were violated.

o **Assumption-3**

\[F(BFloor) = 0.2N(BFloor) \]

Find unknowns: \(N(AB), F(AB), N(AFloor), F(AFloor), N(BFloor), F(BFloor), P(A1) \).

(Seven equations and seven unknowns)

 Verify inequalities

\[F(AFloor) \leq 0.2N(AFloor) \]
\[F(ABFloor) \leq 0.4N(AB) \]

Discard solution if inequalities were violated.

- Among the valid solutions pick the one with smallest \(P(A1) \).
Problem-6

The blocks A, B, and C weigh 50lb, 40lb, and 60lb, respectively. Determine P for impending motion. Friction coefficient at all surfaces is 0.2.

Figure-6a

- **How many bodies?** 3 (bodies A, B, and C)
- **How many rough surfaces?** 3
 - Between A and B, μ known
 - Between A and floor, μ known
 - Between C and floor, μ known
Body A
- Weight of A: known
- How many unknown forces? 2
 - \(P(A1) = \text{applied force} \) \(P \)
 - \(P(A2) = \text{force from cable} \)
- Motion: slip (force balance)

Body B
- Weight of B: known
- How many unknown forces? 1
 - \(P(B1) = \text{force from cable} \)
- Motion: slip (force balance)

Body C
- Weight of C: known
- How many unknown forces? 1
 - \(P(C1) = \text{force from cable} \)
- Motion: slip (force balance)

Equations that relate unknown forces; in addition to equilibrium equations
In addition to equilibrium equations, how many equations can you write (BY USING NEWTON'S 3RD LAW, CONTINUOUS CABLE CONDITION etc.) that relate these unknown forces? 2

Figure-5c
Additional equations connecting \(P(A1), P(A2), P(B1), \) and \(P(C1) \): 2
- Continuous cable condition
 \[
P(A2) = P(B1)
\]
- Equilibrium of pulley
 \[
P(C1) = P(B1) + P(A2)
\]

Solution Strategy

Equilibrium Equations

- For body A: 2
- For body B: 2
- For body C: 2

Unknown forces: \(N(AB), F(AB), N(AFloor), F(AFloor), N(CFloor), F(CFloor), P(A1), P(A2), P(B1), P(C1) \)

Change 2 out of 3 INEQUALITIES into EQUALITIES

- \(F(AB) = \mu N(AB) \)
- \(F(AFloor) = \mu N(AFloor) \)

\(F(CFloor) = \mu N(CFloor) \)

VERIFY REMAINING INEQUALITIES

Figure-5d

- **Equilibrium equations for A:** 2
 \[
P(A1) - P(A2) - F(AB) - F(AFloor) = 0

 N(AFloor) - N(AB) - 50 = 0
 \]

- **Equilibrium equations for B:** 2
 \[
 N(AB) - 40 = 0

 F(AB) - P(B1) = 0
 \]

- **Equilibrium equations for C:** 2
 \[
 N(CFloor) - 60 = 0

 P(C1) - F(CFloor) = 0
 \]
Friction inequalities changed to equalities: 2 out of 3

- Assumption-1

\[F(A\text{Floor}) = 0.2N(A\text{Floor}) \]
\[F(C\text{Floor}) = 0.2N(C\text{Floor}) \]

Find unknowns: N(AB), F(AB), N(AFloor), F(AFloor), N(CFloor), F(CFloor), P(A1), P(A2), P(B1), P(C1).

(Ten equations and ten unknowns)

Verify inequality
\[F(AB) \leq 0.2N(AB) \]
Discard solution if inequality was violated.

- Assumption-2

\[F(A\text{Floor}) = 0.2N(A\text{Floor}) \]
\[F(AB) = 0.2N(AB) \]

Find unknowns: N(AB), F(AB), N(AFloor), F(AFloor), N(CFloor), F(CFloor), P(A1), P(A2), P(B1), P(C1).

(Ten equations and ten unknowns)

Verify inequality
\[F(C\text{Floor}) \leq 0.2N(C\text{Floor}) \]
Discard solution if inequality was violated.

- Assumption-3

\[F(C\text{Floor}) = 0.2N(C\text{Floor}) \]
\[F(AB) = 0.2N(AB) \]

Find unknowns: N(AB), F(AB), N(AFloor), F(AFloor), N(CFloor), F(CFloor), P(A1), P(A2), P(B1), P(C1).

(Ten equations and ten unknowns)

Verify inequality
\[F(A\text{Floor}) \leq 0.2N(A\text{Floor}) \]
Discard solution if inequality was violated.

- Among the valid solutions pick the one with smallest P(A1).
Problem-7

The blocks A, B, and C weigh 50lb, 40lb, and 60lb, respectively. Determine P for impending motion. Friction coefficient at all surfaces is 0.75.

- How many bodies? 3 (bodies are A, B, and C)
- How many rough surfaces? 3
 - Between A and floor, μ known
 - Between A and B, μ known
 - Between B and C, μ known
- Body A -
 - Weight of A: known
 - How many unknown forces? 0
 - Motion: slip (force balance)

- Body B -
 - Weight of B: known
 - How many unknown forces? 1
 - \(P(B1) \) = force \(P \)
 - Motion: slip (force balance)

- Body C -
 - Weight of C: known
 - How many unknown forces? 1
 - \(P(C1) \) = force from cable
 - Motion: slip (force balance)

Additional equations connecting \(P(B1) \) and \(P(C1) \): 0
Figure-5d

- Equilibrium equations for A: 2

\[N(AFloor) - N(AB) - 50 \cos 33 = 0 \]
\[F(AB) - F(AFloor) - 50 \sin 33 = 0 \]

- Equilibrium equations for B: 2

\[N(AB) - N(BC) - 40 \cos 33 = 0 \]
\[P(B1) - F(AB) - F(BC) - 40 \sin 33 = 0 \]

- Equilibrium equations for C: 2

\[N(BC) - 60 \cos 33 = 0 \]
\[F(BC) - P(C1) - 60 \sin 33 = 0 \]

- Friction inequalities changed to equalities: 2 out of 3
 - Assumption-1

\[F(AFloor) = 0.75N(AFloor) \]
\[F(AB) = 0.75N(AB) \]

Find unknowns: N(AFloor), F(AFloor), N(AB), F(AB), N(BC), F(BC), P(B1), P(C1).

(Eight equations and eight unknowns)

Verify inequality
\[F(BC) \leq 0.75N(BC) \]

Discard solution if inequality was violated.

- **Assumption-2**

\[
F(\text{AFloor}) = 0.75N(\text{AFloor}) \\
F(BC) = 0.75N(BC)
\]

Find unknowns: \(N(\text{AFloor}), F(\text{AFloor}), N(\text{AB}), F(\text{AB}), N(\text{BC}), F(\text{BC}), P(\text{B1}), P(\text{C1})\).

(Eight equations and eight unknowns)

Verify inequality

\[F(\text{AB}) \leq 0.75N(\text{AB}) \]

Discard solution if inequality was violated.

- **Assumption-3**

\[
F(BC) = 0.75N(BC) \\
F(AB) = 0.75N(AB)
\]

Find unknowns: \(N(\text{AFloor}), F(\text{AFloor}), N(\text{AB}), F(\text{AB}), N(\text{BC}), F(\text{BC}), P(\text{B1}), P(\text{C1})\).

(Eight equations and eight unknowns)

Verify inequality

\[F(\text{AFloor}) \leq 0.75N(\text{AFloor}) \]

Discard solution if inequality was violated.

- *Among the valid solutions pick the one with smallest \(P(A1)\).*